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Abstract: The application of wavelet neural network in adaptive coordination of power system damping 
controllers, i.e. power system stabilizers (PSSs) and flexible alternating current transmission system (FACTS) 
controllers is investigated and presented in this paper. In the present work, the wavelet neural network is 
utilized to represent the relationship between the power system states (operating conditions and configurations) 
and the controller parameters (gains and time constants) which is generally nonlinear. The proposed adaptive 
power system damping controller is intended to enhance and maintain power system stability even if the system 
operating conditions and/or configurations change. The developed wavelet neural network-based stabilizer has 
been tested with a representative multi-machine power system to verify its dynamic performance. 
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1 Introduction 
It is widely known that PSS and FACTS controllers 
or devices can be utilized to improve damping and 
enhance the stability of a power system. However, 
in using the devices for damping improvement and 
stability enhancement, the coordination amongst the 
controllers needs to be considered for achieving the 
best result. 

Investigation in the above context of control 
coordination has been carried out by many 
researchers, and the results have been reported in 
many journal papers (for example in [1-9]). In the 
papers [1-9], the design procedures or coordination 
methods amongst different controllers have been 
proposed. However, the developed techniques were 
non-adaptive, and therefore, its performance might 
deteriorate with the changes of system operating 
conditions and/or configurations. 

To overcome the above disadvantage, adaptive 
control coordination techniques have been proposed 
by some researches [10-13]. In the investigation, the 
proposed adaptive damping controllers have been 
successfully applied to improve and maintain the 
stability of small power systems. However, adaptive 
control coordination among different controllers in 
larger multi-machine power system environment 
was not considered in the papers. 

Recently, the adaptive coordination amongst 
various damping controllers in larger multi-machine 
environment has been proposed and developed [14, 
15]. In the proposed design, artificial neural network 

(ANN) has been utilized to produce different sets of 
stabilizer parameter values for different system 
conditions/configurations. This property makes the 
stabilizer adaptive, i.e. it can maintain system 
stability even if the system operating 
conditions/configurations change. 

More recently, the use of wavelet neural network 
(WNN) as an alternative to neural network in 
designing adaptive controller has been proposed [16, 
17]. The WNN has been utilized to represent the 
relationship between the power system states and 
the controller parameters which is generally 
nonlinear. The developed wavelet neural network-
based adaptive damping controller has been tested 
with a representative three-machine power system. 
Although, it has been successfully applied to 
enhance the stability of a small power system, its 
performance, however, on larger interconnected 
multi-machine power systems environment is still 
unknown and needs to be investigated further. 

Therefore, against the above background, the 
objective of the present work is to extend and apply 
the wavelet neural network-based power system 
damping controller proposed in [16, 17] to larger 
interconnected multi-machine power system 
containing PSSs and FACTS devices, i.e. thyristor-
controlled series capacitor (TCSCs). Results of the 
investigation are also presented in the present paper, 
where eigenvalue calculations are used in the testing 
and verification of the proposed adaptive controller 
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dynamic performance on larger multi-machine 
power system. 
 

2 WNN-Based Adaptive Controller 
2.1 Power System Damping Controllers 

PSS is probably the most widely used device for 
improving the power system damping and stability. 
PSS contribution to oscillation damping is obtained 
by introducing a signal to the generator excitation 
system. Block diagram of a PSS controller used in 
the present paper is shown in Figure 1 and is 
adopted from [18, 19]. The PSS output signal is 
input to the excitation system and contributes to the 
system damping. Also, in the present work, the 
generator speed is taken as an input signal to the 
PSS. 

TCSC, on the other hand, has the primary 
function of regulating a transmission line power. 
This function is generally carried out by changing 
the line impedance. This capability in controlling 
the power flow can be exploited to support the 
system damping and stability. Block diagram of a 
TCSC controller used in the present work is shown 
in Figure 2 [1, 2]. To make the oscillation damping 
more effective, a supplementary damping controller 
(SDC) with line power input as shown in Figure 3 is 
usually employed. 

 
 
 
 
 
 
 
 
 
 

Figure 1 PSS control block diagram 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 TCSC control block diagram 
 
2.2 WNN-Based Adaptive Controller 

Similar to ANN, WNN is also a universal 
approximator. Therefore, it can be used as an 

alternative to ANN [20, 21]. In the present work, the 
WNN is utilized to describe the relationship 
between the power system states  and the controller 
parameters which is generally nonlinear. 
 
 
 
 
 
 
 
 

Figure 3 SDC control block diagram 
 

The structure of the WNN is shown in Figure 4. 
It can be seen that there are two sets of inputs in the 
structure of Figure 4. The first set of inputs, which 
represents the power system configuration, is 
obtained from the real and imaginary parts of the 
reduced nodal impedance matrix. The second set of 
inputs, which represents power system operating 
condition, is obtained from generator active- and 
reactive-power. If there are Ng generator nodes, 
then the total number of inputs of the WNN in 
Figure 4 will be Ng2+3Ng. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Structure of WNN 
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Also, it can be observed that the set of outputs in 
Figure 4 gives the optimal values of the controller 
parameters. For individual power system controller 
types, Tables 1 and 2 give the description of the 
wavelet neural network output parameters of Figure 
4. The number of outputs is 6(Nc+Np), where Nc 
and Np are the number of PSSs and SDCs 
respectively. 

 
Table 1 Stabilizer output for PSS 

Controller 
Type 

Parameters Description 

 
PSS 

KPSS PSS gain 

TPSS 

Time constant of 
PSS washout 

block 

TPSS1, TPSS2, TPSS3, 
TPSS4 

Time constants of 
PSS lead-lag 

blocks 
 

Table 2 Stabilizer output for SDC 
Controller 

Type 
Parameters Description 

 
SDC 

KSDC SDC gain 

TSDC 

Time constant of 
SDC washout 

block 

TSDC1, TSDC2, TSDC3, 
TSDC4 

Time constants of 
SDC lead-lag 

blocks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 WNN-based stabilizer 
 

The overall structure of the proposed WNN-
based stabilizer is shown in Figure 5. It can be seen 
that the WNN (described previously) is the most 
important part of the structure. Therefore, it can be 
said that WNN is the brain of the proposed adaptive 
stabilizer. The WNN is trained so that it can always 

produce the optimal parameter values of the PSSs 
and SDCs, and thus, can improve and maintain the 
power system damping and stability. 
 

3 Results and Analysis 
3.1 Test System 

The power system used to verify the proposed 
WNN-based adaptive controllers described in 
Section 2 is shown in Figure 6 [22]. Data for the test 
system, including its initial states, are presented in 
Appendix. Table 3 shows the dynamic performance 
of the system of Figure 6. Results in Table 3 
indicate that the power system has poor damping 
and stability as there are modes with unacceptable 
damping ratios or lower than 0.1. 

Therefore, to improve the stability, it is proposed 
to install PSSs in the system (each generator is 
equipped with PSS). It is also proposed to install 
supplementary controls for TCSCs in lines L1 and 
L22 for the purpose of further improvement of 
stability. The TCSCs has been installed in the 
system for the primary purpose of voltage support 
and power flow control. An opportunity is then 
taken to equip the TCSCs installed with 
supplementary controls to provide a secondary 
function for damping improvement of the 
electromechanical modes. 
 

Table 3 Electromechanical modes for system of 
Figure 6 

Mode Eigenvalues 
Freq. 
(Hz) 

Damping 
Ratio 

1 -0.3095±j4.6164 0.73 0.07*

2 -0.9460±j9.8279 1.56 0.10 
3 -0.8489±j9.7800 1.56 0.09*

4 -1.4983±j9.2320 1.47 0.16 
5 -0.7082±j7.1152 1.13 0.10 
6 -0.5103±j8.1909 1.30 0.06*

7 -1.0511±j8.3870 1.33 0.12 
8 -1.0236±j7.6053 1.21 0.13 
9 -0.7462±j7.9753 1.27 0.09*

*: poor damping modes 
 
3.2 Performance of WNN-Based Controller 

Tables 4 - 7 show the comparisons of modal 
response characteristics (electromechanical mode 
eigenvalues, frequencies and damping ratios) 
between non-adaptive (fixed-parameter) and 
adaptive (wavelet neural network-based) controllers 
of the system in Figure 6 for a range of 
contingencies and operating conditions. For non-
adaptive controller, the controller parameters 
derived from the base case design are used for all of 
the contingency cases and load change. It is to be 
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noted that, as the system in Figure 6 has 9 
electromechanical modes, only three modes with the 

lowest damping ratios are taken and shown for the 
comparisons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 10-machine 40-node power system 
 
Table 4. Controller performances at load base case 

Controller Eigenvalues 
Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-0.5045 ± J4.5147 0,72 0,11 
-1.1271 ± J10.1490 1,62 0,11 
-0.8230 ± J8.0006 1,27 0,10 

Adaptive 
-0.5043 ± J4.5123 0,72 0,11 

-1.1147 ± J10.1736 1,62 0,11 
-0.8152 ± J7.9964 1,27 0,10 

 
Table 4 shows the controller dynamic 

performances at the base case. The base case is the 
case with the full system (no line outages) in Figure 
6, and load demands at all nodes are at their base 

load values. The comparison in Table 4 confirms 
that the damping ratios for the electromechanical 
modes achieved by the adaptive controller are 
closely similar to those obtained from the fixed-
parameter controllers (i.e. non-adaptive) designed 
with the system configuration and operating 
condition specified in the base case. 

Table 5 shows the controller dynamic 
performances at the load change case. In this case, 
the load demands at all nodes are increased to 
150% of base load while the system configuration 
remains as that of the base case. With non-adaptive 
controllers, the damping ratios of the 
electromechanical modes decrease noticeably in 
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comparison with those in the base case (there are 
modes with unacceptable damping ratios or lower 
than 0.1). However, with the adaptive controller, 
the damping ratios are maintained at the levels 
similar to those of the base case. 
 

Table 5. Controller performances at load change 
case 

Controller Eigenvalues 
Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-0.8643 ± J10.4711 1,67 0,08 
-0.9314 ± J10.5194 1,67 0,09 
-0.7106 ± J8.0625 1,28 0,09 

Adaptive 
-1.0397 ± J10.2261 1,63 0,10 
-0.8736 ± J7.9257 1,26 0,11 
-0.4748 ± J4.2394 0,67 0,11 

 
Table 6. Controller performances at line outage 

case 

Controller Eigenvalues 
Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-1.1450 ± J10.1453 1,61 0,11 
-1.1220 ± J10.1548 1,62 0,11 
-0.6515 ± J7.8715 1,25 0,08 

Adaptive 
-1.0511 ± J9.9964 1,59 0,11 
-1.0260 ± J10.0656 1,60 0,10 
-0.8291 ± J7.9021 1,26 0,10 

 
Table 7. Controller performances at line outage and 

load change case 

Controller Eigenvalues 
Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-0.8653 ± J10.4805 1,67 0,08 
-0.9315 ± J10.5249 1,68 0,09 
-0.5451 ± J7.9697 1,27 0,07 

Adaptive 
-1.2345 ± J11.0760 1,75 0,11 
-1.0459 ± J10.2910 1,64 0,10 
-0.4383 ± J3.8909 0,62 0,11 

 
Further comparison of Table 6 focuses on 

contingency where one transmission circuit (L4) is 
disconnected. The load demands are those in the 
base case. It can be seen that from Table 6 there is 
a substantial reduction in the mode damping in 
comparison with the base case. The damping ratio 
of this mode is reduced to 0.08, compared to 0.11 
in the base case. With the adaptive controller, the 
damping ratios of all of the electromechanical 
modes are almost not affected by the outage, in 
comparison with those in the base case, as 
indicated in Table 6. 

Table 7 focuses on contingency where 
transmission circuit (L4) is disconnected during 
higher system load (load demands at all nodes are 

increased to 150% of base load). This contingency 
affects the damping of the electromechanical 
modes significantly when the non-adaptive 
controllers are used. The damping ratio of 0.10 in 
the base case is now reduced to 0.07. The 
robustness of the adaptive controller in this outage 
case is confirmed by the results of Table 7. The 
controller parameters determined by the trained 
wavelet neural network are able to adapt to the new 
system condition for maintaining the modal 
damping ratios at the levels similar to those in the 
base case. 
 

4 Conclusions 
In the present paper, WNN-based adaptive power 
system damping controller has been developed to 
maintain and enhance the stability of a multi-
machine power system. The WNN has been used as 
an alternative to ANN as it is also a universal 
approximator. The WNN is employed to represent 
the nonlinear relationship between the power 
system conditions and the parameters of damping 
controllers. The trained WNN-based adaptive 
controller is then used to produce optimal system 
damping and stability. The developed wavelet 
neural network-based controller has been tested 
with a representative multi-machine power system 
containing multiple damping controllers. The test 
results demonstrate that the proposed adaptive 
controller improves the system damping and 
dynamic performance even if the system operating 
conditions and/or configurations change. 
 

Appendix 
 

Table A1. Line data 

Line 
Series Impedance 

(pu) 
Shunt Admittance 

(pu) 
1 0.0035 + j0.0411 j0.6987

2 0.0010 + j0.0250 j0.7500

3 0.0013 + j0.0151 j0.2572

4 0.0070 + j0.0086 j0.1460

5 0.0013 + j0.0213 j0.2214

6 0.0011 + j0.0133 j0.2138

7 0.0008 + j0.0128 j0.1342

8 0.0008 + j0.0129 j0.1382

9 0.0002 + j0.0026 j0.0434

10 0.0008 + j0.0112 j0.1476

11 0.0006 + j0.0092 j0.1130

12 0.0007 + j0.0082 j0.1389

13 0.0004 + j0.0046 j0.0780

14 0.0023 + j0.0363 j0.3804

15 0.0010 + j0.0250 j1.2000
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16 0.0004 + j0.0043 j0.0729

17 0.0004 + j0.0043 j0.0729

18 0.0009 + j0.0101 j0.1723

19 0.0018 + j0.0217 j0.3660

20 0.0009 + j0.0094 j0.1710

21 0.0007 + j0.0089 j0.1342

22 0.0016 + j0.0195 j0.3040

23 0.0008 + j0.0135 j0.2548

24 0.0003 + j0.0059 j0.0680

25 0.0007 + j0.0082 j0.1319

26 0.0013 + j0.0173 j0.3216

27 0.0008 + j0.0140 j0.2565

28 0.0006 + j0.0096 j0.1846

29 0.0022 + j0.0350 j0.3610

30 0.0032 + j0.0323 j0.5130

31 0.0014 + j0.0147 j0.2396

32 0.0043 + j0.0474 j0.7802

33 0.0057 + j0.0625 j1.0290

34 0.0014 + j0.0151 j0.2490

35 0.0016 + j0.0435 0 

36 0.0016 + j0.0435 0 

37 0.0000 + j0.0250 0 

38 0.0000 + j0.0200 0 

39 0.0007 + j0.0142 0 

40 0.0009 + j0.0180 0 

41 0.0000 + j0.0143 0 

42 0.0005 + j0.0272 0 

43 0.0006 + j0.0232 0 

44 0.0000 + j0.0181 0 

45 0.0008 + j0.0156 0 

46 0.0007 + j0.0138 0 

47 0.0007 + j0.0250 0 

*pu on 100 MVA 
 

Table A2. Bus data 

Bus 
Volt. 
Mag. 

Volt. 
Angle 

PGen 
(pu) 

QGen 
(pu) 

PLoad 
(pu) 

QLoad 
(pu) 

1 0.982 0 5.7324 2.0732 0.092 0.046 
2 1.030 -11.12 10 0.8805 11.04 2.5 
3 0.983 1.61 6.5 2.0591 0 0 
4 1.012 0.61 5.08 1.6700 0 0 
5 0.997 2.05 6.32 1.0897 0 0 
6 1.049 4.02 6.5 2.1115 0 0 
7 1.063 6.72 5.6 1.0046 0 0 
8 1.028 1.13 5.4 0.0068 0 0 
9 1.027 6.42 8.3 0.2268 0 0 
10 1.048 -4.60 2.5 1.4496 0 0 
11 1.012 -7.20 0 0 0 0 
12 1.000 -7.22 0 0 0.085 0.880 
13 1.014 -7.10 0 0 0 0 
14 1.012 -8.77 0 0 0 0 
15 1.016 -9.19 0 0 3.200 1.530 
16 1.032 -7.79 0 0 3.294 0.323 
17 1.034 -8.79 0 0 0 0 
18 1.031 -9.63 0 0 1.580 0.300 

19 1.050 -3.17 0 0 0 0 
20 0.991 -4.58 0 0 6.800 1.030 
21 1.032 -5.38 0 0 2.740 1.150 
22 1.050 -0.94 0 0 0 0 
23 1.045 -1.14 0 0 2.475 0.846 
24 1.038 -7.67 0 0 3.086 0.922 
25 1.058 -5.66 0 0 2.240 0.472 
26 1.052 -6.92 0 0 1.390 0.170 
27 1.038 -8.93 0 0 2.810 0.755 
28 1.050 -3.41 0 0 2.060 0.276 
29 1.050 -0.65 0 0 2.835 0.269 
30 1.017 -6.39 0 0 0 0 
31 1.048 -9.58 0 0 0 0 
32 1.030 -9.87 0 0 3.220 0.024 
33 1.005 -9.48 0 0 0 0 
34 1.004 -10.66 0 0 5.000 1.840 
35 1.007 -8.77 0 0 0 0 
36 0.997 -10.98 0 0 2.338 0.840 
37 0.996 -11.48 0 0 5.220 1.760 
38 1.028 -11.31 0 0 0 0 
39 1.049 -7.02 0 0 0 0 
40 1.000 0 0 0 0 0 

* pu on 100 MVA 
 

Table A3. Machine resistance and reactance 
Mach

. 
Ra 

(pu) 
Xd 
(pu) 

Xd’ 
(pu) 

Xq 
(pu) 

Xq’ 
(pu) 

1 0 0.2950 0.0647 0.2820 0.0647 
2 0 0.2000 0.0600 0.1900 0.0600 
3 0 0.2495 0.0531 0.2370 0.0531 
4 0 0.3300 0.0660 0.3100 0.0660 
5 0 0.2620 0.0436 0.2580 0.0436 
6 0 0.2540 0.0500 0.2410 0.0500 
7 0 0.2950 0.0490 0.2920 0.0490 
8 0 0.2900 0.0570 0.2800 0.0570 
9 0 0.2106 0.0570 0.2050 0.0570 

10 0 0.2000 0.0400 0.1960 0.0400 
* pu on 100 MVA 
 

Table A4. Machine inertia and time constant 

Mach. 
H 
(s) 

Td0 
(s) 

Tq0 
(s) 

1 30.3 6.56 1.50 
2 100.0 6.00 0.70 
3 35.8 5.70 1.50 
4 26.0 5.40 0.44 
5 28.6 5.69 1.50 
6 34.8 7.30 0.40 
7 26.4 5.66 1.50 
8 24.3 6.70 0.41 
9 24.5 4.79 1.96 
10 42.0 5.70 0.50 
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